Expanding access to CAR T cell therapies through local manufacturing – Nature Biotechnology

[ad_1]

  • Schuster, S. J. et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N. Engl. J. Med. 380, 45–56 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grupp, S. A., DiNofia, A. M. & Si Lim, S. J. Tisagenlecleucel for treatment of children and young adults with relapsed/refractory B-cell acute lymphoblastic leukemia. Pediatr. Blood Cancer 68, e29123 (2021).


    Google Scholar
     

  • Neelapu, S. S. et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abramson, J. S. et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet 396, 839–852 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Brentjens, R. J. et al. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat. Med. 9, 279–286 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalos, M. et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med. 3, 95ra73 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Larson, R. C. & Maus, M. V. Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nat. Rev. Cancer 21, 145–161 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S. & Milone, M. C. CAR T cell immunotherapy for human cancer. Science 359, 1361–1365 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Finck, A. V., Blanchard, T., Roselle, C. P., Golinelli, G. & June, C. H. Engineered cellular immunotherapies in cancer and beyond. Nat. Med. 28, 678–689 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lowery, F. J. et al. Molecular signatures of antitumor neoantigen-reactive T cells from metastatic human cancers. Science 375, 877–884 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, E. et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N. Engl. J. Med. 382, 545–553 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rohaan, M. W. et al. Tumor-infiltrating lymphocyte therapy or ipilimumab in advanced melanoma. N. Engl. J. Med. 387, 2113–2125 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Center for Biologics Evaluation and Research (CBER). Approval Letter—Kymriah. U.S. Food and Drug Administration (FDA) https://www.fda.gov/media/106989/download (2017).

  • Center for Biologics Evaluation and Research (CBER). Approval Letter—Yescarta. U.S. Food and Drug Administration (FDA) https://www.fda.gov/media/108458/download (2017).

  • Center for Biologics Evaluation and Research (CBER). Approval Letter—Tecartus. U.S. Food and Drug Administration (FDA) https://www.fda.gov/media/140415/download (2020).

  • Center for Biologics Evaluation and Research (CBER). Approval Letter—Breyanzi. U.S. Food and Drug Administration (FDA) https://www.fda.gov/media/145712/download (2021).

  • Center for Biologics Evaluation and Research (CBER). Approval Letter—CARVYKTI. U.S. Food and Drug Administration (FDA) https://www.fda.gov/media/156572/download (2022).

  • Center for Biologics Evaluation and Research (CBER). Approval Letter—ABECMA. U.S. Food and Drug Administration (FDA) https://www.fda.gov/media/147062/download (2021).

  • Center for Biologics Evaluation and Research (CBER). Approval Letter—Breyanzi. U.S. Food and Drug Administration (FDA) https://www.fda.gov/media/159473/download (2022).

  • Center for Biologics Evaluation and Research (CBER). Approval letter—Yescarta. U.S. Food and Drug Administration (FDA) https://www.fda.gov/media/157539/download (2022).

  • Kourelis, T. et al. Ethical challenges with CAR T slot allocation with idecabtagene vicleucel manufacturing access. J. Clin. Oncol. 40, e20021 (2022).

    Article 

    Google Scholar
     

  • Al Hadidi, S. et al. Clinical outcome of patients with relapsed refractory multiple myeloma listed for BCMA directed commercial CAR-T therapy. Bone Marrow Transplant. 58, 443–445 (2023).

  • Ahmed, N. et al. ‘Waitlist mortality’ is high for myeloma patients with limited access to BCMA therapy. Front. Oncol. 13, 1206715 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Locke, F. L. et al. Real-world impact of time from leukapheresis to infusion (vein-to-vein time) in patients with relapsed or refractory (r/r) large B-cell lymphoma (LBCL) treated with axicabtagene ciloleucel. Blood 140, 7512–7515 (2022).

    Article 

    Google Scholar
     

  • Wang, K. et al. A multiscale simulation framework for the manufacturing facility and supply chain of autologous cell therapies. Cytotherapy 21, 1081–1093 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Srai, J. S., Badman, C., Krumme, M., Futran, M. & Johnston, C. Future supply chains enabled by continuous processing—opportunities and challenges. May 20–21 2014 Continuous Manufacturing Symposium. J. Pharm. Sci. 104, 840–849 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abou-el-Enein, M. et al. Scalable manufacturing of CAR T cells for cancer immunotherapy. Blood Cancer Discov. 2, 408–422 (2021).

    CAS 

    Google Scholar
     

  • Levine, B. L., Miskin, J., Wonnacott, K. & Keir, C. Global manufacturing of CAR T cell therapy. Mol. Ther. Methods Clin. Dev. 4, 92–101 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Myles, L. & Church, T. D. An industry survey of implementation strategies for clinical supply chain management of cell and gene therapies. Cytotherapy 24, 344–355 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Papathanasiou, M. M. et al. Autologous CAR T-cell therapies supply chain: challenges and opportunities? Cancer Gene Ther. 27, 799–809 (2020).

    CAS 

    Google Scholar
     

  • Harrison, R. P., Ruck, S., Medcalf, N. & Rafiq, Q. A. Decentralized manufacturing of cell and gene therapies: overcoming challenges and identifying opportunities. Cytotherapy 19, 1140–1151 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Alqazaqi, R. et al. Geographic and racial disparities in access to chimeric antigen receptor-T cells and bispecific antibodies trials for multiple myeloma. JAMA Netw. Open 5, e2228877 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palani, H. K. et al. Decentralized manufacturing of anti CD19 CAR-T cells using CliniMACS Prodigy®: real-world experience and cost analysis in India. Bone Marrow Transplant. 58, 160–167 (2022).

  • Iancu, E. M. & Kandalaft, L. E. Challenges and advantages of cell therapy manufacturing under good manufacturing practices within the hospital setting. Curr. Opin. Biotechnol. 65, 233–241 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benjamin, R. et al. UCART19, a first-in-class allogeneic anti-CD19 chimeric antigen receptor T-cell therapy for adults with relapsed or refractory B-cell acute lymphoblastic leukaemia (CALM): a phase 1, dose-escalation trial. Lancet Haematol. 9, e833–e843 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benjamin, R. et al. Genome-edited, donor-derived allogeneic anti-CD19 chimeric antigen receptor T cells in paediatric and adult B-cell acute lymphoblastic leukaemia: results of two phase 1 studies. Lancet 396, 1885–1894 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mailankody, S. et al. Allogeneic BCMA-targeting CAR T cells in relapsed/refractory multiple myeloma: phase 1 UNIVERSAL trial interim results. Nat. Med. 29, 422–429 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Neelapu, S. S. et al. First-in-human data of ALLO-501 and ALLO-647 in relapsed/refractory large B-cell or follicular lymphoma (R/R LBCL/FL): ALPHA study. J. Clin. Oncol. 38, 8002 (2020).

    Article 

    Google Scholar
     

  • Ghassemi, S. et al. Reducing ex vivo culture improves the antileukemic activity of chimeric antigen receptor (CAR) T cells. Cancer Immunol. Res. 6, 1100–1109 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ottaviano, G. et al. Phase 1 clinical trial of CRISPR-engineered CAR19 universal T cells for treatment of children with refractory B cell leukemia. Sci. Transl. Med. 14, eabq3010 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chiesa, R. et al. Base-edited CAR7 T cells for relapsed T-cell acute lymphoblastic leukemia. N. Engl. J. Med. 389, 899–910 (2023).

  • Hu, Y. et al. Genetically modified CD7-targeting allogeneic CAR-T cell therapy with enhanced efficacy for relapsed/refractory CD7-positive hematological malignancies: a phase I clinical study. Cell Res. 32, 995–1007 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lam, C., Meinert, E., Yang, A. & Cui, Z. Comparison between centralized and decentralized supply chains of autologous chimeric antigen receptor T-cell therapies: a UK case study based on discrete event simulation. Cytotherapy 23, 433–451 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ran, T., Eichmüller, S. B., Schmidt, P. & Schlander, M. Cost of decentralized CAR T‐cell production in an academic nonprofit setting. Int. J. Cancer 147, 3438–3445 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bersenev, A. & Fesnak, A. Place of academic GMP facilities in modern cell therapy. In Cell Reprogramming for Immunotherapy (eds Katz, S. G. & Rabinovich, P. M.) Vol. 2097, 329–339 (Springer, 2020).

  • Zhu, F. et al. Closed-system manufacturing of CD19 and dual-targeted CD20/19 chimeric antigen receptor T cells using the CliniMACS Prodigy device at an academic medical center. Cytotherapy 20, 394–406 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mock, U. et al. Automated manufacturing of chimeric antigen receptor T cells for adoptive immunotherapy using CliniMACS Prodigy. Cytotherapy 18, 1002–1011 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lock, D. et al. Automated, scaled, transposon-based production of CAR T cells. J. Immunother. Cancer 10, e005189 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castella, M. et al. Point-of-care CAR T-cell production (ARI-0001) using a closed semi-automatic bioreactor: experience from an academic phase I clinical trial. Front. Immunol. 11, 482 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jackson, Z. et al. Automated manufacture of autologous CD19 CAR-T cells for treatment of non-Hodgkin lymphoma. Front. Immunol. 11, 1941 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shah, N. N. et al. Bispecific anti-CD20, anti-CD19 CAR T cells for relapsed B cell malignancies: a phase 1 dose escalation and expansion trial. Nat. Med. 26, 1569–1575 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harrison, R. P., Ruck, S., Rafiq, Q. A. & Medcalf, N. Decentralised manufacturing of cell and gene therapy products: learning from other healthcare sectors. Biotechnol. Adv. 36, 345–357 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Center for Drug Evaluation and Research (CDER). Distributed Manufacturing and Point-of-Care Manufacturing of Drugs https://www.fda.gov/about-fda/reports-budgets-cder/distributed-manufacturing-and-point-care-manufacturing-drugs-discussion-paper (2022).

  • Chalasani, R., Hershey, T. B. & Gellad, W. F. Cost and access implications of defining CAR-T therapy as a drug. JAMA Health Forum 1, e200868 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • U.S. Food & Drug Administration (FDA). FDA Regulation of Human Cells, Tissues, and Cellular and Tissue-Based Products (HCT/P’s) Product List https://public4.pagefreezer.com/browse/FDA/06-02-2023T10:15/https://www.fda.gov/vaccines-blood-biologics/tissue-tissue-products/fda-regulation-human-cells-tissues-and-cellular-and-tissue-based-products-hctps-product-list (2018).

  • U.S. Food & Drug Administration (FDA). Regulatory Considerations for Human Cells, Tissues, and Cellular and Tissue-Based Products: Minimal Manipulation and Homologous Use https://www.fda.gov/media/109176/download (2020).

  • U.S. Food & Drug Administration (FDA). Same Surgical Procedure Exception under 21 CFR 1271.15(b): Questions and Answers Regarding the Scope of the Exception https://www.fda.gov/regulatory-information/search-fda-guidance-documents/same-surgical-procedure-exception-under-21-cfr-127115b-questions-and-answers-regarding-scope (2017).

  • Nagai, S. Regulatory hurdles for CAR T-cell therapy in Japan. Lancet Haematol. 8, e686–e687 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • U.S. Food & Drug Administration (FDA). Identification of Manufacturing Establishments in Applications Submitted to CBER and CDER Questions and Answers https://www.fda.gov/media/131911/download (2019).

  • U.S. Food & Drug Administration (FDA). Demonstration of Comparability of Human Biological Products, Including Therapeutic Biotechnology-Derived Products https://www.fda.gov/regulatory-information/search-fda-guidance-documents/demonstration-comparability-human-biological-products-including-therapeutic-biotechnology-derived (1996).

  • Better, M., Chiruvolu, V. & Sabatino, M. Overcoming challenges for engineered autologous T cell therapies. Cell Gene Ther. Insights 4, 173–186 (2018).


    Google Scholar
     

  • U.S. Food & Drug Administration (FDA). Considerations for the Development of Chimeric Antigen Receptor (CAR) T Cell Products https://www.fda.gov/media/156896/download (2022).

  • Marks, P. & Gottlieb, S. Balancing safety and innovation for cell-based regenerative medicine. N. Engl. J. Med. 378, 954–959 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Marks, P. & Gottlieb, S. Statement from FDA Commissioner Scott Gottlieb, M.D. and Peter Marks, M.D., Ph.D., Director of the Center for Biologics Evaluation and Research on New Policies to Advance Development of Safe and Effective Cell and Gene Therapies https://www.fda.gov/news-events/press-announcements/statement-fda-commissioner-scott-gottlieb-md-and-peter-marks-md-phd-director-center-biologics (2019).

  • Medicines & Healthcare products Regulatory Agency (MHRA). Consultation on Point of Care Manufacturing https://www.gov.uk/government/consultations/point-of-care-consultation/consultation-on-point-of-care-manufacturing (2021).

  • Nizzi, F. Redefining the role of blood establishments as raw material suppliers, manufacturers, and distributors for new cell therapies: the Blood Systems experience. Transfusion 56, 29S–31S (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Coppens, D. G. et al. Regulating advanced therapy medicinal products through the Hospital Exemption: an analysis of regulatory approaches in nine EU countries. Regen. Med. 15, 2015–2028 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coppens, D. G. M. et al. Advanced therapy medicinal product manufacturing under the hospital exemption and other exemption pathways in seven European Union countries. Cytotherapy 22, 592–600 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Trias, E., Juan, M., Urbano-Ispizua, A. & Calvo, G. The hospital exemption pathway for the approval of advanced therapy medicinal products: an underused opportunity? The case of the CAR-T ARI-0001. Bone Marrow Transplant. 57, 156–159 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ortíz-Maldonado, V. et al. CART19-BE-01: a multicenter trial of ARI-0001 cell therapy in patients with CD19+ relapsed/refractory malignancies. Mol. Ther. 29, 636–644 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Therapeutic Goods Administration. Autologous Human Cells and Tissues Products Regulation https://www.tga.gov.au/resources/resource/guidance/autologous-human-cells-and-tissues-products-regulation (2019).

  • Ivaskiene, T., Mauricas, M. & Ivaska, J. Hospital exemption for advanced therapy medicinal products: issue in application in the European Union Member States. Curr. Stem Cell Res. Ther. 12, 45–51 (2016).


    Google Scholar
     

  • Cuende, N. et al. The puzzling situation of hospital exemption for advanced therapy medicinal products in Europe and stakeholders’ concerns. Cytotherapy 16, 1597–1600 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • The Alliance for Regenerative Medicine. Recommendations for the Use of Hospital Exemption http://alliancerm.org/wp-content/uploads/2020/10/ARM-position-on-HE-final-Oct-2020.pdf (2020).

  • EFPIA & EBE. Hospital exemption for advanced therapy medicinal products (ATMPs): greater transparency needed in order to improve patient safety and access to ATMPs. https://www.efpia.eu/news-events/the-efpia-view/statements-press-releases/10102017-ebe-and-efpia-call-on-the-eu-commission-and-member-states-to-improve-transparency-on-hospital-exemptions-for-advanced-therapies/ (2017).

  • Cuende, N. et al. Patient access to and ethical considerations of the application of the European Union hospital exemption rule for advanced therapy medicinal products. Cytotherapy 24, 686–690 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Warkentin, P. I. Voluntary accreditation of cellular therapies: Foundation for the Accreditation of Cellular Therapy (FACT). Cytotherapy 5, 299–305 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maus, M. V. & Nikiforow, S. The why, what, and how of the new FACT standards for immune effector cells. J. Immunother. Cancer 5, 36 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hort, S. et al. Toward rapid, widely available autologous CAR-T cell therapy—artificial intelligence and automation enabling the smart manufacturing hospital. Front. Med. 9, 913287 (2022).

    Article 

    Google Scholar
     

  • Blache, U., Popp, G., Dünkel, A., Koehl, U. & Fricke, S. Potential solutions for manufacture of CAR T cells in cancer immunotherapy. Nat. Commun. 13, 5225 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soler, M. & Lechuga, L. Boosting cancer immunotherapies with optical biosensor nanotechnologies. Eur. Med. J. 4, 124–132 (2019).

    Article 

    Google Scholar
     

  • Oh, B.-R. et al. Integrated nanoplasmonic sensing for cellular functional immunoanalysis using human blood. ACS Nano 8, 2667–2676 (2014).

    CAS 

    Google Scholar
     

  • Oh, B.-R. et al. Multiplexed nanoplasmonic temporal profiling of T-cell response under immunomodulatory agent exposure. ACS Sens. 1, 941–948 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raphael, M. P., Christodoulides, J. A., Delehanty, J. B., Long, J. P. & Byers, J. M. Quantitative imaging of protein secretions from single cells in real time. Biophys. J. 105, 602–608 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurucz, I. et al. Label-free optical biosensor for on-line monitoring the integrated response of human B cells upon the engagement of stimulatory and inhibitory immune receptors. Sens. Actuators B Chem. 240, 528–535 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Soler, M. et al. Two-dimensional label-free affinity analysis of tumor-specific CD8 T cells with a biomimetic plasmonic sensor. ACS Sens. 3, 2286–2295 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Walsh, A. J. et al. Classification of T-cell activation via autofluorescence lifetime imaging. Nat. Biomed. Eng. 5, 77–88 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rossoff, J. et al. Out-of-specification tisagenlecleucel does not compromise safety or efficacy in pediatric acute lymphoblastic leukemia. Blood 138, 2138–2142 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jacobson, C. A. et al. Outcomes of patients (Pts) in ZUMA-9, a multicenter, open-label study of axicabtagene ciloleucel (axi-cel) in relapsed/refractory large B cell lymphoma (R/R LBCL) for expanded access and commercial out-of-specification (OOS) product. Blood 136, 2–3 (2020).

    Article 

    Google Scholar
     

  • Chong, E. A. et al. CAR T cell viability release testing and clinical outcomes: is there a lower limit? Blood 134, 1873–1875 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • U.S. Food & Drug Administration (FDA). Approval Order—CliniMACS CD34 Reagent System https://wayback.archive-it.org/7993/20190208123839/https://www.fda.gov/BiologicsBloodVaccines/BloodBloodProducts/ApprovedProducts/PremarketApprovalsPMAs/ucm382986.htm (2014).

  • U.S. Food & Drug Administration (FDA). Getting a Humanitarian Use Device to Market https://www.fda.gov/medical-devices/humanitarian-device-exemption/getting-humanitarian-use-device-market (2022).

  • Priesner, C. et al. Automated enrichment, transduction, and expansion of clinical-scale CD62L+ T cells for manufacturing of gene therapy medicinal products. Hum. Gene Ther. 27, 860–869 (2016).

    CAS 

    Google Scholar
     

  • Lock, D. et al. Automated manufacturing of potent CD20-directed chimeric antigen receptor T cells for clinical use. Hum. Gene Ther. 28, 914–925 (2017).

    CAS 

    Google Scholar
     

  • Blaeschke, F. et al. Induction of a central memory and stem cell memory phenotype in functionally active CD4+ and CD8+ CAR T cells produced in an automated good manufacturing practice system for the treatment of CD19+ acute lymphoblastic leukemia. Cancer Immunol. Immunother. 67, 1053–1066 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Castella, M. et al. Development of a novel anti-CD19 chimeric antigen receptor: a paradigm for an affordable CAR T cell production at academic institutions. Mol. Ther. Methods Clin. Dev. 12, 134–144 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, W., Jordan, K. R., Schulte, B. & Purev, E. Characterization of clinical grade CD19 chimeric antigen receptor T cells produced using automated CliniMACS Prodigy system. Drug Des. Devel. Ther. 12, 3343–3356 (2018).

    CAS 

    Google Scholar
     

  • Aleksandrova, K. et al. Functionality and cell senescence of CD4/ CD8-selected CD20 CAR T cells manufactured using the automated CliniMACS Prodigy® platform. Transfus. Med. Hemother. 46, 47–54 (2019).


    Google Scholar
     

  • Fernández, L. et al. GMP-compliant manufacturing of NKG2D CAR memory T cells using CliniMACS Prodigy. Front. Immunol. 10, 2361 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vedvyas, Y. et al. Manufacturing and preclinical validation of CAR T cells targeting ICAM-1 for advanced thyroid cancer therapy. Sci. Rep. 9, 10634 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arcangeli, S. et al. Next-generation manufacturing protocols enriching TSCM CAR T cells can overcome disease-specific T cell defects in cancer patients. Front. Immunol. 11, 1217 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bozza, M. et al. A nonviral, nonintegrating DNA nanovector platform for the safe, rapid, and persistent manufacture of recombinant T cells. Sci. Adv. 7, eabf1333 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palen, K., Zurko, J., Johnson, B. D., Hari, P. & Shah, N. N. Manufacturing chimeric antigen receptor T cells from cryopreserved peripheral blood cells: time for a collect-and-freeze model? Cytotherapy 23, 985–990 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Glienke, W. et al. GMP-compliant manufacturing of TRUCKs: CAR T cells targeting GD2 and releasing inducible IL-18. Front. Immunol. 13, 839783 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joedicke, J. J. et al. Accelerating clinical-scale production of BCMA CAR T cells with defined maturation stages. Mol. Ther. Methods Clin. Dev. 24, 181–198 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nicod, C. et al. CAR-T cells targeting IL-1RAP produced in a closed semiautomatic system are ready for the first phase I clinical investigation in humans. Curr. Res. Transl. Med. 71, 103385 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Maschan, M. et al. Multiple site place-of-care manufactured anti-CD19 CAR-T cells induce high remission rates in B-cell malignancy patients. Nat. Commun. 12, 7200 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • [ad_2]

    Source Link

    Top Crypto Gainers on October 25 - LINK, CFX, And DYDX Previous post Top Crypto Gainers on October 25 – LINK, CFX, And DYDX
    This unbearably cute life-sim RPG had me at "Stardew Valley crossed with Spirited Away," and it's out next month Next post This unbearably cute life-sim RPG had me at “Stardew Valley crossed with Spirited Away,” and it’s out next month